Mínimo (fuerte): Un punto extremo X0 de una función f(X0) define un mínimo de la función si f(X0+h) > f(X0), donde X0 es cualquier punto de la función y h en valor absoluto es suficientemente pequeña.
Máximo (fuerte): Un punto extremo X0 de una función f(X0) define un máximo de la función si f(X0+h) < f(X0), donde X0 es cualquier punto de la función y h en valor absoluto es suficientemente pequeña.
Una función puede contener varios máximos y mínimos, identificados por los puntos extremos de la función.
Puntos minimax.
El punto minimax de la función lagrangiana es otro concepto relacionado con la solución de un problema de optimización. Si bien su definición no le hace útil a la hora de la resolución directa del problema, sí constituye un paso intermedio muy importante en la obtención del problema dual, que estudiaremos más adelante. En esta sección definimos dicho punto y estudiamos su relación con otro concepto, el punto de silla de la lagrangiana. La relación del punto minimax con la solución del problema de programación no lineal se obtiene de forma inmediata sin mas que tener en cuenta que: Min L (x, ë ) = f (x) − Max ët [g(x) − b]R m+R m+ Si gi (x) – bi ≤ 0, entonces ëi [gi(x) - bi] ≤ 0, luego Max ëi ( gi (x) − bi ) = 0R m+ (se alcanza en ë = 0). Por tanto, si x ∈ X, Min L (x, ë ) = f (x) .R m+ Si gi (x) – bi > 0, entonces Sup ëi [gi(x) - bi] = ∞, por lo que en este caso no se alcanza el R m+ mínimo de la Lagrangiana. Por tanto, Max Min L (x, ë ) = Max f (x) D R m+ X Así pues, si (x0, ë0) es un punto minimax, x0 es una solución óptima del problema original.
No hay comentarios:
Publicar un comentario